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A Scale-Based Connected Coherence Tree
Algorithm for Image Segmentation

Jundi Ding, Runing Ma, and Songcan Chen

Abstract—This paper presents a connected coherence tree
algorithm (CCTA) for image segmentation with no prior knowl-
edge. It aims to find regions of semantic coherence based on the
proposed -neighbor coherence segmentation criterion. More
specifically, with an adaptive spatial scale and an appropriate
intensity-difference scale, CCTA often achieves several sets of
coherent neighboring pixels which maximize the probability of
being a single image content (including kinds of complex back-
grounds). In practice, each set of coherent neighboring pixels
corresponds to a coherence class (CC). The fact that each CC just
contains a single equivalence class (EC) ensures the separability
of an arbitrary image theoretically. In addition, the resultant CCs
are represented by tree-based data structures, named connected
coherence tree (CCT)s. In this sense, CCTA is a graph-based
image analysis algorithm, which expresses three advantages: 1) its
fundamental idea, -neighbor coherence segmentation criterion, is
easy to interpret and comprehend; 2) it is efficient due to a linear
computational complexity in the number of image pixels; 3) both
subjective comparisons and objective evaluation have shown
that it is effective for the tasks of semantic object segmentation
and figure-ground separation in a wide variety of images. Those
images either contain tiny, long and thin objects or are severely
degraded by noise, uneven lighting, occlusion, poor illumination,
and shadow.

Index Terms— -neighbor coherence segmentation criterion,
connected coherence tree, figure-ground separation, object seg-
mentation, semantic segmentation.

I. INTRODUCTION

IMAGE segmentation is an extensively studied area with a
long history. It is, perhaps, the most challenging and crit-

ical problem in image processing and analysis. The principal
difficulty encountered in image processing is the ability of tech-
niques to extract semantic objects correctly from an image with
no prior knowledge. Many other video processing applications
suffer from the same drawback, such as MPEG-4 [1] and “query
by image” databases [2] of MPEG-7. Therefore, it is significant
to propose a semantic segmentation algorithm. Once a number
of semantically salient and meaningful regions have been iden-
tified, it is possible to quantify their locations and spatial organi-
zations correlatively. That is a crucial factor in the interpretation
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process, e.g., a blue extended patch at the top of an image prob-
ably represents a clear sky (see also [3] and [4]). Namely, the
segmentation results can be further used for image, video coding
and their retrievals, or other intermediate-level and high-level
processings in computer vision, such as figure-ground separa-
tion, blob-detection, and contour completion [5], [6].

Numerous methods have already been proposed for image
segmentation, which vary from -means algorithm to thresh-
olding procedures, to heuristic region growing processes, and
to the sophisticated hierarchical methods [7], [8]. The -means
algorithm, the best known and most widely used clustering
method, is unable to handle unbalanced elongated clusters,
where one cluster has much more points than a neighboring
cluster. In those cases, the -means algorithm will erroneously
split the larger cluster into artificial subclusters. Image thresh-
olding methods are also popular due to their simplicity and
efficiency. However, traditional histogram-based thresholding
algorithms cannot separate those areas which have the same
gray level but do not belong to the same part. In addition, they
cannot process images whose histograms are nearly unimodal,
especially when the target region is much smaller than the
background area. Region growing algorithms deal with spatial
repartition of the image feature information. In general, they
perform better than the thresholding approaches for several
sets of images. However, the typical region growing processes
are inherently sequential. The regions produced depend both
on the order in which pixels are scanned and on the value of
pixels which are first scanned and gathered to define each new
segment. Hierarchical methods, such as the split-and-merge
techniques, often yield strong artifacts in segmentation: the
region borders have ragged appearance; long, thin, waving
objects are difficult to delineate.

These issues pointed out above have reflected that the
problem of image segmentation is important and difficult.
Furthermore, there is no crisp definition of the concept itself.
The only stable definition of segmentation is the statement of
the ultimate goal: finding regions of semantic coherence [9].
As pointed out by many researchers in [10]–[23], segmentation
procedures based on graph theoretic considerations have a
better favoring potential for fulfilling the above requirements
than the methods mentioned above. Their hierarchical natures
facilitate the subsequent processing and analysis of images.
Makrogiannis et al. in [24] contend that these diversified
graph-based methods coming forth in recent years use the
Gestalt principles of perceptual grouping to form the image
regions. They commonly represent an image to be segmented
as a graph. The nodes correspond to the image pixels, the
edges(branches) convey the relations between pixels by a
weight which indicates the (dis)-similarity of the two pixels (or
regions).
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The graph-based methods here are roughly divided into two
categories: tree-structured segmentation [10]–[16] and spectral
clustering [17]–[22]. Both try to divide the initial graph into sub-
graphs that correspond to image regions. The former is based on
agglomeration heuristics to yield the final tree-structured sub-
graphs via merging or splitting operations. The latter is based
on the notion of graph cuts to realize the graph partition by
finding the eigen-decomposition of an affinity matrix that de-
fines the similarities between pixels. For example, an efficient
algorithm proposed by Felzenszwalb et al. in [10] and [11] be-
longs to the former category, which is based on the structure
of the Kruskal’s minimum spanning tree (KMST). It uses the
local variation of intensities between neighboring pixels to ob-
tain a neither under- nor over-segmentation. Moreover, its run-
ning time is nearly linear in the number of image pixels. Another
efficient MST-based algorithm is developed by Haxhimusa et al.
in [12] and [13], which borrows the Boruvka’s MST principle.
Compared with the tree-structured methods, spectral clustering
approaches are computationally expensive, such as the graph
cut [17], [18], the Andrew [19], or the Weiss’s methods [20]
and the normalized cut (Ncut) [21]–[23]. They are proven to be
NP-hard. So, we can only find their approximate solutions prac-
tically.

In this paper, we propose a scale-based connected coherence
tree algorithm (CCTA) for semantic object segmentation and
figure-ground separation. It is obvious that CCTA falls into the
category of the tree-structured segmentation. More importantly,
it satisfies a so-called 3-E property: effective, efficient, and easy.
This coincides with the suggestion stated by Haxhimusa in [12]
and [13]. That is, a segmentation method should be i) effective to
capture perceptually important regions into a hierarchical struc-
ture, reflecting global aspects of the image; ii) highly efficient,
running in time linear in the number of pixels; iii) easy to inter-
pret and implement.

Specifically, CCTA is to find all semantic regions which per-
ceptually delineate salient objects in the image, and such re-
gions are formed by connecting all coherent pixels in a tree-
based data structure. So, it is important for us to determine
what sort of image pixels are coherent. Intuitively, it is useful
to think of the notion coherence in terms of the intensity dif-
ference between locally contiguous pixels. This means that the
neighboring pixels with slowly varying intensities are coherent,
while the neighboring pixels with sharp varying intensities are
incoherent. Such a formulation is easy to interpret and imple-
ment. For a mathematical description, we, hence, introduce a
-neighbor coherence segmentation criterion. Under such a cri-

terion, CCTA finds several sets of coherent neighboring pixels
which maximize the probability of being a single physical ob-
ject. At the same time, it builds each formed set into a connected
coherence tree (CCT) structure. Naturally, the pixels which are
not in any CCTs have significant discontinuous intensity values.
CCTA pools them into a residual or remaining group. In other
words, CCTA is effective to realize a unification of both co-
herence region segmentation and incoherence group detection.
Moreover, it has a nearly linear computational complexity in
the number of the image pixels. Hence, we can say that CCTA
is efficient according to Haxhimusa stated in [12] and [13]: “ a
graph-based segmentation algorithm is efficient if it has a linear
computational complexity in proportion to the number of image
pixels.”

Considering the ultimate goal of image segmentation men-
tioned above, it is reasonable to assess the effectiveness of a
graph-based algorithm with respect to its ability of finding the
semantic coherence regions. Besides, the computational com-
plexity is another characteristic of an algorithm. Undoubtedly,
a high computation cost will severely hamper the generaliza-
tion of the algorithm to wide real-time applications. Other than
being effective and efficient, it is not pivotal that whether an al-
gorithm has an intrinsic idea easy to interpret and implement or
not. However, it would be desirable if an algorithm can provide
such an intrinsical easiness as well as the effectiveness and ef-
ficiency.

The remainder of this paper is organized as follows. Section II
reviews some related work briefly. Section III is to present the
-neighbor coherence segmentation criterion and several useful

related concepts in detail. CCTA with its property analysis is
described in Section IV. Extensive experimental comparison re-
sults on synthetic and real-world gray images are demonstrated
in Section V. They have shown that the performance of CCTA
is superior to that of KMST [10], [11] and Ncut [21], [22]. Two
ways of quantitative and objective evaluation are available in
Section VI, where the effectiveness of CCTA is verified by not
only empirical goodness but also empirical discrepancy. Finally,
we conclude the whole paper.

II. RELATED WORK

Our ultimate purpose of the study is to find visually semantic
coherent segments which have no adequate mathematic descrip-
tion fitting well with human visual system. Hence, many re-
searchers just start from the intuition of their visual perception
and decision process to determine the semantic coherence of re-
gions. There is a certain formal resemblance between our region
coherence and the two criteria mentioned below. In [5] and [6],
Gu defined the region coherence in the following:

(1)

It checks all the neighboring pixels of region to figure out
whether region is still coherent if a neighborhood pixel is
inserted into it. If (1) is satisfied, then the region’s coherence is
not destroyed and the pixel is added to the region . Such a cri-
terion is prone to an over-segmentation for a region with gradu-
ally changing gray value when the change exceeds the threshold

. In [4], Chen replaced the above coherence criterion with the
following:

(2)

where is the pixel being processed in current region and is
its neighbor to be processed. If the difference between the two
pixels is below the threshold , is added to the current region

. Then is processed in the same way as . The region will
sequentially grow until no new pixel can be added. Obviously,
such a criterion can tolerate the gradual change of the regions’
gray value. Each pixel shares the equal importance to grow the
region, so it often tends to segment the regions with low contrast
but containing distinct objects into a whole. It, thus, causes an
under-segmentation.
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Virtually, the algorithmic layout of CCTA has been derived
from the modified neighborhood-based clustering (MNBC)
algorithm for image segmentation [16] where the generated
clusters of grayscales (not the image pixels) are represented
by the directed trees (DT)s. The root node of each DT is the
seed grayscale whose grayscale neighborhood density factor
(GNDF) is not less than 1. The grayscales in -neighborhood of
the root node are its children nodes. Then all the seed grayscales
in the children nodes are processed as those in the parent nodes
to find their respective children nodes (the grayscales in their
respective -neighborhood). The DT is sequentially growing
until no new seed children grayscale can be found. In such
a top-down strategy, one DT is constructed beginning with a
seed grayscale and terminating at the nonseed children nodes.
Dependent on a unique variable , MNBC can group the
grayscales (instead of the image pixels) into one or more DTs.
After assigning the corresponding pixels to a constructed DT,
one meaningful image region is formed. The pixels with their
grayscales not in any DTs are designated as outliers. In this
way, MNBC has a linear computational complexity in the
number of grayscales in an image. However, it incorporates
no spatial information between image pixels. Hence, it cannot
tackle the more complex images which are severely degraded
by noise, poor illumination and shadow.

III. NOTATION AND DEFINITIONS

In this section, we would like to introduce several important
notations which may be used in the algorithm description in next
section.

An image is a pair consisting of a finite set of pixels
(points in ), and a mapping that assigns to each pixel

a pixel value in some arbitrary value space.
1) Square Neighborhood: Experiments have always shown

that proximity is an important low-level cue in deciding which
image pixels or regions will be grouped. In most image-pro-
cessing applications, it is justified to group the nearby pixels
together since they are more likely to belong to the same re-
gion. Generally speaking, this cue is characterized by their spa-
tial distance on the image plane. The formal mathematical de-
scription is , , , where denotes the
Euclidean distance and is a specified constant [14]. For a fixed
central pixel , that represents
a neighborhood of the pixel . Fig. 1(a)–(c) shows the neigh-
boring pixels of a fixed central pixel in terms of the Euclidean
distance between the coordinate values of pixels, when
(the 4-connected neighborhoods), ( the 8-connected
neighborhoods) and , respectively. Note that Fig. 1(b)
is a square neighborhood, which we in this paper focus on. How-
ever, it is difficult to use the Euclidean distance to characterize
the square neighborhood with a unified expression for the con-
stant . It appears to be able to take , because they
are the square neighborhoods when and . However,

when , , i.e., that is false.
As a result, we have to give a different way to depict the square
neighborhood. It is

(3)

Fig. 1. (a)–(c) Euclidean neighborhood for � = 1 (the 4-connected neighbor-
hood),

p
2 (the 8-connected neighborhood), and

p
5, respectively. It is obvious

that the so-called 8-connected neighborhood is a 3� 3 square neighborhood.

Obviously, (3) provides a rigorous mathematical representation
for the square neighborhood with the size of

. The selection of the size for a local square neighborhood
determined by is usually image- and application-dependent
which will be described later.

2) Neighborhood Coherence Factor: Suppose that the square
neighborhood of each pixel is given, there are predicatively the
pixels in the set

(4)

and the pixels in the set

(5)

for an arbitrary threshold , where and

(6)

is a pixel-value difference measure. If the intensity difference
between a central pixel and its neighboring pixels is very small
(below a threshold), it is conceivable that pixel will be an inte-
rior point of one interested region and could be taken as a seed
pixel used to grow the region. In contrast, if the intensity dif-
ference between the central pixel and its neighboring pixels is
rather high (above a threshold), the would be out of one planar
surface and lose the growing ability. Intuitively, if the number of
neighboring pixels with the intensity values approaching to the
central pixel’s exceeds those far away from the central pixel’s,
we say that the central pixel could also be taken as a seed be-
cause the similar or coherent pixels within its neighborhood are
in the ascendant. Motivated by this phenomenological explana-
tion of image formation, we now define one neighborhood co-
herence factor (NCF) as follows:

(7)

where refers to the cardinality of a set, i.e., the number of
elements in a set. It is defined to be the ratio of the number
of pixels having the similar intensity with s to the number
of pixels having the distinct intensity with s. Obviously, this
value is quite discrepant for different pixels. When ,

. In such a situation, is similar to most of its
neighboring pixels. When , . That im-
plies few of its neighboring pixels are similar to . Therefore,
we can say that is actually an -similarity between
and its surrounding pixels with respect to . Note that may
be 0 and NCF, thus, becomes infinite. It is necessary for us to
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give an alternative, or , which are defined in
(8) and (9), respectively

(8)

(9)

Clearly, when the similar pixels will predom-
inate over a handful of discontinuity pixels with sharp varying
intensity values. Similarly, when the disconti-
nuity pixels with sharp varying intensity values will predom-
inate over the minority similar pixels. Note that

; hence, they complement each other and play
an identically important role. Moreover, both
and are equal to . As a result, we
can take either of them as a substitute for NCF defined in (7).
In this paper, we use to measure the -similarity be-
tween and its surrounding pixels. It has the values in the close
interval of [0, 1].

In Fig. 2(a)–(c), we give an example to demonstrate why
and how can measure the -similarity of each pixel to
its proximity pixels. From left to right, the three columns re-
spectively show the original natural image named “Crow” with
the size 80 120, values of image pixels ( ,

) and the corresponding image in gray. In Fig. 2(a),
there are three visible objects: a crow, long and thin branches,
and the background. Clearly, the pixels in the background (ex-
cept for the four angles) have the similar intensities. The pixels
around the thin branch or boundary often come from the back-
ground and, hence, have the dissimilar intensities. As we can see
in Fig. 2(b), the pixels located in the background have
values approximating 1 (the maximum in red in the on-line ver-
sion). It indicates that these pixels are -similar to its neighbors.
The pixels located on the thin branch and boundary have
values approximating 0 (the minimum in blue in the on-line
version). However, note that the minimum here is

and . It indicates that they are greatly
dissimilar with their neighboring pixels. Of course, the pixels
lying in the body of the crow have the values in the in-
terval (0,1). The corresponding gray image is shown in
Fig. 2(c). From white to black, the values of pixels vary
from 1 to 0.

3) Seed Pixels: With the analysis detailed above, we can dis-
cover that when , is -similar with its neigh-
bors, i.e., the intensities of majority pixels surrounding vary
slowly; when , is distinct from its neigh-
bors, i.e., the intensities of majority pixels surrounding vary
sharply. Further, the pixels with , together with
its nearest neighbors, would delineate all or part of an object
with a high probability, as the background pixels in Fig. 2(b)
and (c). Alternatively, the pixels with always lie
between two different objects which may be the image border
or the noise and some shadow boundaries, as the branch pixels
in Fig. 2(b) and (c). Therefore, the pixel with
can be taken as a seed pixel to grow the region; whereas the
pixel with is called a nonseed pixel. Here,
we denote the set of seed pixels as

(10)

Fig. 2. Illustration ofNCF : (a) original image ”Crow” with the size 80� 120;
(b) NCF values of image pixels (k = 7, " = 31); (c) corresponding NCF
gray image; (d) seed pixels in white and no-seed pixels in nonwhite.

According to this definition, all image pixels are divided into
seed pixels and nonseed ones. Fig. 2(d) shows the seed (in white)
and nonseed (in black) pixels of “Crow” image [Fig. 2(a)].

4) -Neighbor Coherence Segmentation: For any seed pixel
in a region, we say that its -neighboring pixels in the set

[see (4)] are coherent with which should be in the same region
as . If the pixels within the same region are similar each other,
it is likely that the -neighbors of any pixel in this region belong
to the same part. Let us imagine the opposite case: pick a pixel
in a segmented region, whose -neighbors often belong to other
regions. Such a segmentation result is useless because it con-
tradicts to the notion of image segmentation, i.e., maximizing
the within-region similarities and minimizing the between-re-
gion similarities. Hence, we stand out such a sensible observa-
tion with the name of “ -neighbor coherence segmentation”:

For any seed pixel in a current region, its -neighboring pixels
are coherent and should be segmented into the same region as
the seed pixel.

More vigorously speaking, the -neighbor coherence seg-
mentation defines a “transitive relationship.” Namely, assume

, and , if is one of the
-neighbors of while is one of the -neighbors of ,

together with its all -neighbors is grouped into the same region
as and together with its all -neighbors is grouped into the
same region as . In this way, together with its all -neighbors
is obviously in the same region as .

In practice, our criterion is motivated by the unsupervised
-nearest neighbor ( ) consistency in data clustering [25]

where the cluster nearest neighbor consistency works as a theo-
retical foundation. That is, “For any data object in a cluster, its

-nearest neighbors should also be in the same cluster.” The-
oretically speaking, our criterion conforms to the cluster
consistency. The main task is to identify all points involved in
the chain operation and then move them all at once into a cluster
or region. The difference is that in consistency, each ob-
ject is enforced to be a member of a cluster with its s, no
matter whether it is an outlier or not; while in our case, only
the seed pixels have the ability to grow a region. Hence, our
-neighbor coherence criterion could reduce the effect or com-

pact of outlier or noise pixels for segmentation and even detect
the outlier or noise successfully. Moreover, our criterion could
virtually specify an equivalence relation on the set of seed pixels
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and thereby ensure the separability of an arbitrary image with
respect to and .

5) Equivalence Relation: For seed pixels , we
define if , satisfy either of the following conditions:
1) is one of the -neighbors of , i.e., ; 2) there exists
a finite number of pixels such that ,

, , .
It is easy to prove that such a definition satisfies three prop-

erties: reflexive, symmetric, and transitive.
1) Reflexive: , is coherent with itself, i.e.,

, then .
2) Symmetric: , if the pixel-value difference

between and is under the threshold , then
and , that is, they are coherent with each other, i.e.,

implies .
3) Transitive: , , , then (see

the detailed explanation above).
It is to say that on the nonempty set of the seed pixels, our seg-

mentation criterion is an equivalence relation . In set theory,
equivalence relation is one of the most commonly used and per-
vasive tools because of its power to partition a given set into the
disjoint union of subsets, for example.

6) Partition Theorem [26]: Let be a nonempty set and
an equivalence relation on . The equivalence classes of

form a partition, a disjoint collection of nonempty subsets whose
union is the whole set of .

Furthermore, if two seed pixels , belong to the same seg-
mented region (which implies ), we can arbitrarily pick
one of them as the initial pixel to generate the same region .
That is, our criterion is insensitive to the order of the initial seed
pixel selection.

7) Equivalence Class and Coherence Class: As discussed
above, the -neighbor coherence segmentation shows an equiv-
alence relation among the seed pixels in SEED. Consequently,
such an equivalence relation can partition SEED (the seed
pixels) into several equivalence classes (EC). By the partition
theorem, every collection of ECs induced by this equivalence re-
lation is a partition of the set of seed pixels and thereby a par-
tition of a given image. The number of the equivalence classes
determines the number of the expected regions. Moreover, we
could pick an arbitrary pixel within the same equivalence class
to yield the same region.

The analysis and the related concepts above have indicated
that our -neighbor coherence segmentation criterion guaran-
tees the separability of an arbitrary image. This also suggests
that the criterion is reasonable and feasible for the task of image
segmentation.

Note that the expected final regions are coherence classes,
rather than equivalence classes. Because the proposed mean-
ingful -neighbor coherence segmentation criterion is to group
the all -neighbors of each seed pixel in the current region into
the same region, including the nonseed -neighbors of each seed
pixel. While these nonseed -neighbors without the capability
of growth just provide the termination condition of the region
growing process. Without loss of generality, we take as the
initial seed pixel to grow one region. Then the set of pixels in

that are grouped into the same expected region as based on
-neighbor coherence segmentation criterion is called the co-

herence class (CC) of ( s CC), containing the s EC.

TABLE I
SEGMENTATION ALGORITHM

IV. CONNECTED COHERENCE TREE ALGORITHM (CCTA)

Remarkably, those foregoing notations and definitions are
significant which ensure the separability of an image. That is,
the task of dividing an image is equivalent to a job of finding
these coherence classes (CCs) according to the -neighbor co-
herence criterion. Each CC can be represented by a tree-based
structure with our segmentation algorithm, where is
the set of nodes corresponding to the image pixels in one CC
and is the set of the tree branches connecting all the pixels
in one CC. Hence, this tree is called connected coherence
tree (CCT). Particularly, the oriented branches describe the
-coherence relationship between nodes (parent and child):

given , means that:
1) is a seed node as parent;
2) is a child of and coherent with , i.e., .

Note that could be one seed or nonseed pixel. If is a
nonseed pixel, it would be a leaf node of one CCT; otherwise an
interior node which can be used to continue spanning the CCT.
Therefore, the nodes of one CCT are the pixels in one CC, where
the pixels in the corresponding EC are interior nodes except that
the initial seed pixel is the root one and the pixels in are
leaf ones. The pixels not in any CCTs will be grouped together
as a residual group, denoted as .

Table I gives our algorithm. Concretely, all CCTs would be
formed in Step 2 via the procedure of two closed “while” loops.
In the outer “while” loop, Step 2.1 generates the elementary

where the root node is the seed pixel and its children
nodes are the pixels in ; Step 2.2 searches for the seed
pixels within the children nodes to continue spanning the current

; Step 2.3 is the inner “while” loop which is to discover
all pixels that are reachable from the found children seed nodes
in a top-down breadth-first local search. When there is no pres-
ence of seed pixels in the children nodes, the inner “while” loop
breaks and one final CCT with root is put out in Step 2.4. Step
2.5 pools the remaining seed pixels into the set SEED and the
new outer “while” loop restarts to yield another CCT. The algo-
rithm terminates if all seed pixels are settled (i.e., ).
Outside the two closed “while” loop, Step 3 groups the residual
pixels into the set while Step 4 outputs the formed CCTs. To
understand CCTA more clearly, we demonstrate its growing and
labeling process in Table II with a numerical example, where the
pixels with the bold intensity are the seeds. The corresponding
original and segmented images ( , ) are shown in
Fig. 3.
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TABLE II
NUMERICAL EXAMPLE FOR CCTA’S GROWING PROCESS

Fig. 3. Original image is in the left, and the corresponding segmented image is
in the right when k = 1, " = 5 � Ave(1) = 4:5630 in (11).

A. Parameter Sensitivity to Segmentation Quality

Obviously, the -neighbor coherence segmentation criterion
is fundamental to CCTA. When the criterion is applied prop-
erly, the derived segmentation should be a good approximation
of the image which can, thus, capture a comprehensive descrip-
tion for higher level processes. As the criterion is handled im-
pertinently, some salient information may still be extracted, but
certain classes of objects may be isolated into very small re-
gions which become invalid for higher level processes. A few
questions naturally arise: how sensitive is the criterion to the
segmentation quality? Can the best segmentation be found auto-
matically? In answer to the first question, we must observe that
our criterion in nature involves two parameters, the spatial scale

and the intensity difference scale . Within the same image,
different region segmentations could be obtained by using dif-
ferent values for them. To elaborate this problem, we would
come back to the image “Crow” shown in Fig. 2(a). Ideally, we
wish to form three groups of pixels that belong to visually dis-
tinct regions such as the branches, the background and the crow.
Fig. 4 shows how the segmentation result varies with and .

The parameter used in (4) associates with the intensity con-
trast in the given neighborhood of each pixel. At a low value,
only these flat regions with the almost constant intensity may
be found. At a high value, these regions with the similar intensi-
ties but corresponding to different objects may be segmented
into one large region. For example ( ), is too
low in Fig. 4(c), only the smooth background region (except for
the four angles) is found and other pixels remain in the residual
group. In contrast, is too high to separate the crow and
branches from the background in Fig. 4(f). Therefore, the se-
lection of directly affects the segmentation result. One could
manually choose a fixed for all images or adjust for each
given image based on the image content. The former has proven
to be problematic in our tests because the intensity contrast of
objects in different images is often not on the same level. The

Fig. 4. How the segmentation result varies with k and ", where according to
(11), Ave(6) = 29:022, Ave(7) = 31:65, Ave(12) = 41:51, Ave(18) =
50:343, Ave(4) = 23:128, and Ave(20) = 52:313.

latter is impractical due to the burden of a large tuning com-
putation. Moreover, the image content were implicitly used as
a priori information which would make CCTA be a supervised
method. In contrast, we try to find a way to automatically calcu-
late without increasing the computation complexity of CCTA.

As discussed above, defined in (8) virtually acts
as an -similarity of each pixel with its neighboring pixels.
That is, measures the degree of the similarity between and
one of its neighbor in a relative sense. Of course, the degree of
the similarity is related to the absolute intensity difference be-
tween and one of its neighbors. If is larger than the mean
intensity difference in s neighborhood, denoted by
in (11), is -similar with most of its neighboring pixels. How-
ever, the values of of different pixels are different.
It is, thus, difficult to select a proper between two extreme
cases, i.e., and . Notice that

once the neighborhood size is determined, the average value
of all , denoted by in (11), is a constant which
describes a global tendency of the intensity variation

(11)
Intuitively, it should be a good candidate for . So, we conduct
extensive tests with different with purpose to see whether it is
feasible to determine by this strategy. For this image, when is
automatically set to be the with different varying from
6 to 18, the three objects are accurately distinguished into three
semantic regions. Fig. 4(a) and (b) and Fig. 4(d) and (e) show
four cases, 6, 7, 12, 18, respectively. Of course,
for is not always optimal for each image to be segmented. In
practice, the values near for sometimes produce the
better results. Hence, we determine near the in our
experiments. In this paper, we can always obtain a satisfactory
segmentation by selecting in the range

.
In consequence, is crucial for a successful segmentation. It

determines the size of the square neighborhood defined in (3).
Usually, is related to the size of the objects of interest in the
image. For most applications, if too small a neighborhood is
chosen, CCTA will be sensitive to noise and produce an over-
segmentation. For example, the background in Fig. 4(g) (

) is divided into three small regions. On the contrary, if the
neighborhood size is too large, CCTA will have the increasing
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computational complexity and yield an under-segmentation like
Fig. 4(h) ( ), where the crow is merged with the branches.
Since the size information of objects is often not a known a
priori, it is difficult to choose an optimal with respect to object
dimensions. Similar to the normalized cuts [21], [22], we also
experimentally choose an optimal in a wide range 1–15 for
each image through trial and error. In this paper, an adaptive
in the range of 3–10 has been observed in our experiments.

B. Computational Complexity of CCTA

For a clear qualitative analysis of the proposed algorithm, we
will discuss its computational complexity. The most time-con-
suming work is the calculation of for each pixel in Step
1. Practically, it is not necessary to compute and of
the pixels which are in the first and last rows, columns of
the image , where and are the width and height
of the image respectively. Because those pixels would be par-
titioned into several equivalence classes or the residual group.
Let , , ,
the running time of calculating all is . In our imple-
mentation, . So it takes nearly in proportion to the
number of pixels because . In addition, the recursive
procedure for constructing all CCTs in Step 2 takes about
since each pixel is scanned once, where is the total number of
pixels in the image . Besides, the automatical selection for re-
quires computing and which takes
like the calculation of . Therefore, the total computational
complexity of CCTA is , nearly linear in the number
of pixels. According to Haxhimusa [12], [13], we can say that
CCTA is an efficient graph-based segmentation approach.

V. EXPERIMENTAL RESULTS

It is obvious that describes a kind of local information
and the -neighbor coherence segmentation criterion captures
a global image representation. That is, like Ncut [21], [22]
and KMST [10], [11], CCTA is to reach a global and optimal
segmentation going from local image cues. As a consequence,
they belong to the same segmentation framework. Ncut, based
on spectral graph theory, provides a mechanism for going
from pairwise pixel affinities to partitions that maximize the
ratio of affinities within a group to that across groups, i.e., the
normalized cut criterion. By embedding the normalized cut
problem in the real value domain, this criterion is formulated
as a generalized eigenvalue problem. Then the eigenvectors are
used to construct good partitions of the image. KMST, using the
Kruskal’s MST principle, is a greedy region merging algorithm
based on intensity (or color) differences between neighboring
pixels. It could produce neither under- nor over-segmentations
which capture nonlocal image properties. Moreover, KMST
runs in time nearly in the number of image pixels. They are
two recently developed graph-based segmentation methods
which have already delivered impressive results in a number of
challenging images.

To evaluate our proposed method, in this section, we, thus,
experimentally carry out extensive comparisons with Ncut and
KMST on two types of data. One is the synthetic images, in-
cluding two synthetic noisy images and three synthetic uneven
lighting images; The other is a collection of natural images
coming from the Berkeley Segmentation Dataset and some
empirically usual tested image database. Both contain a variety

Fig. 5. Segmented results for a noisy 6-rectangle gray image 200� 299:
(a) original image; (b) Gaussian noisy image (mean 0 and standard deviation
25.5); (c) G ; (d)–(i) 6-CCTs corresponding to the five squares. Parameter
settings: k = 6, " = Ave(6) = 37:7476.

of images covering a wide range of viewpoints and illumina-
tion angles. In both experiments, only grayscale information
between 0 and 255 is used. In addition,the codes of Ncut and
KMST are available respectively from the authors. Besides
some specific default parameters, both of the two methods de-
pend critically upon several other parameters intrinsic to them.
For Ncut, there are two parameters, the number of regions
and the radius of neighborhood . For KMST, there are also
two parameters, a constant controlling the minimum size
component, and the number of pixels within the minimal
region. Appropriate setting of these parameters is a prerequisite
for successful segmentation. To make a fair comparison, we
tune them over a wide range of values and carefully select
“optimum” so that each method presents the perspectively best
results among the numerous different partitions for each image.

A. Experiments on Synthetic Images

In this subsection, to assess the effectiveness of our algo-
rithm for segmentation tasks, we first perform some experiments
on synthetic data: synthetic noisy images and synthetic uneven
lighting images. In the interest of ensuring that these synthetic
images are biased as little as possible by our immediate research
purpose, we intend to collect the complex synthetic images from
literatures which contain long, thin and small objects. Besides,
they are known to be more challenging and difficult due to the
background degraded by noise, uneven lighting, poor illumina-
tion and shadow.

1) Results for Synthetic Noisy Images: In [27], Huber
pointed out that small deviations from the model assumptions
should impair the performance of the algorithm only by a
small amount. Here, we employ two synthetic noisy images
to illustrate that CCTA, as an image analysis algorithm has an
important quality, i.e., resistant to noise. The first noisy image
in Fig. 5(b) is with the independent gaussian noise (mean 0 and
standard deviation 25.5). Its clean image in Fig. 5(a) comprises
six equal rectangular-shaped regions whose intensity values
vary slowly from dark to white, i.e., the contrast of each region
decreasing gradually from left to right. As expected, CCTA suc-
cessfully yields six CCTs which correspond to the six semantic
rectangular-shaped regions when , , as shown
in Fig. 5(d)–(i). Little residual noise in is shown in Fig. 5(c).
However, many existing methods could find nearly constant
intensity regions, and, thus, they are sensitive to artificially
added noise. For more evidence, we test on another synthetic
noisy image in Fig. 6(b). It is a more complex image than that
in Fig. 5(b). Because the contrast in its clean image [Fig. 6(a)]
decreases both from left to right and from top to bottom. So, it
appears to be an uneven lighting image which presents some
challenges in segmentation. The same gaussian noise added in
Fig. 5(b) provides a higher degree of segmentation difficulty.
It is made up of 24 disconnected square regions and a white



DING et al.: A SCALE-BASED CONNECTED COHERENCE TREE ALGORITHM FOR IMAGE SEGMENTATION 211

Fig. 6. Segmented results for a noisy 24-small-rectangle gray image 95� 145:
(a) original image; (b) Gaussian noisy image (mean 0 and standard deviation
25.5); (c) G ; (d) 24 small rectangle regions segmented one by one; (e) the
narrow fence region; (f)–(g) 25 regions segmented by Ncut and KMST, respec-
tively. Parameter settings of (c)–(e): k = 2, " = Ave(2) = 42:2277 for
CCTA; (f) c = 25, r = 13 for Ncut; (g) t = 500, s = 500 for KMST.

Fig. 7. Results for three images with the uneven lighting background: (a) input
images; (b) segmented images by CCTA (first row 146� 145: k = 8, " = 20,
Ave(8) = 25:5491; second row 188� 251: k = 9, " = 18, Ave(9) =
21:8871; third row 241� 244: k = 9, " = 7, Ave(9) = 9:9211); (c) seg-
mented images by Ncut (first row: c = 2, r = 20; second row: c = 2, r = 11;
third row: c = 2, r = 15); (d) segmented images by KMST (first row: t = 100,
s = 100; second row: s = 500, t = 100; third row: t = 200, s = 500.

connected fence region. From Fig. 6, we can see that all the
three methods, CCTA, Ncut and KMST, can segment this image
into 25 regions correctly. However, the results by CCTA are
visually the smoothest, while those of Ncut are the coarsest.

2) Experiments on Synthetic Uneven Lighting Images: As
illustrated above, CCTA seems to be able to handle the im-
ages with the disturbance of uneven lighting. To further exhibit
this effectiveness of CCTA, more concrete experiments are con-
ducted on three uneven lighting images which are presented
in the first column of Fig. 7. The reason for selecting a con-
tour map and a document is that the objects in these images
include long, thin lines and the background has large homoge-
nous areas. Moreover, under uneven lighting conditions, many
methods may easily result in broken lines due to the thinness of
contours or strokes, and large black areas called ghost objects
because of homogenous areas. Therefore, there is a need to de-
velop a new technique able to effectively deal with this type of
images. In fact, the uneven lighting often exists in the capturing
of an image. The authors in [28] analyzed that the main causes
for uneven lighting are: 1) the light may not be always stable;
2) the object is so large that it creates an uneven distribution of
the light; and 3) the scene is unable to be optically isolated from
the shadows of other objects.

In general, our target for this type of images is to correctly
extract the contour map and document from the complex un-
even lighting backgrounds or equivalently separate the back-
grounds from the contour map and document. That is to say
there should be two expected semantic regions ideally. This im-
plies that the segmented background regions should embrace
few or no lines of contour map and words of document, which is
a hard job. Fig. 7 shows the segmentation results for these three
images. From left to right, the four columns show the input im-
ages [Fig. 7(a)], segmented results by CCTA, Ncut and KMST,
respectively. It can be seen that CCTA separates the complex

Fig. 8. Results for images with many small objects spreading over a relatively
simple background. From left to right, they are (a) input images; (b), (c) seg-
mented images by CCTA; (d) Ncut; and (e) KMST, respectively. Parameter set-
tings: “Rice”: k = 3, " = Ave(3) for CCTA; c = 78, r = 12 for Ncut;
t = 500, s = 30 for KMST; “Bacteria”: k = 3, " = 19, Ave(3) = 11:2960
for CCTA; c = 21, r = 12 for Ncut; t = 400, s = 430 for KMST; “Coins”:
k = 5, " = Ave(5) for CCTA; c = 11, r = 18 for Ncut; t = 300, s = 1000
for KMST.

background [the white area of Fig. 7(b)] well from the objects
[the black areas of Fig. 7(b)] when the required number of re-
gions is two. The pixels with large intensity variance belonging
to the background are organized in one CCT while the pixels
with little intensity variance belonging to the contour map and
document objects are pooled in a residual group. In contrast,
Ncut and KMST are disabled by such an uneven lighting distur-
bance. They partition these images into two regions which are
difficult to decipher, rather than the two reasonable regions, i.e.,
one background region and one object region. Hence, we have
to increase the number of expected regions for Ncut and KMST
so that they could achieve a relative comprehensible grouping
of pixels. The resultant segmentations are listed in Fig. 7(c) and
(d) which still appear very poor, especially for the contour map
images. This sufficiently indicates that CCTA is promising for
dealing with these challenging images under the condition of
uneven lighting.

B. Experiments on Natural Images

The natural images are more challenging in that they contain
significant variations in scale, illumination conditions (sunny
versus overcast), material appearance, and sensor noise. The dif-
ficult phenomena of shadows, multiple scales, and translucent
vegetation are ubiquitous.

We wish to segment the natural images into several spatially
coherent groups of pixels corresponding to physically objects in
the natural world. With no a priori information about the image,
it is practically difficult to obtain the good semantic segmen-
tation for an unsupervised approach. However, we empirically
show that CCTA has succeeded in doing this task using the pro-
posed criterion. Here, the representative sample images are di-
vided into two types. One type contains the images composed
of many grains of target objects, which are much smaller than
the background such as the rice, bacteria and coins. The other
type comes from the Berkeley Segmentation Dataset [9] which
contains a wide range of subject matter, such as the translucent
water with surface ripples, the clouded sky, the animals partially
occluded by sparse vegetation.

1) Results for Natural Images With Grains of Objects: De-
spite much effort done for natural image segmentation, there
are still questions which have not been provided the exciting
solutions. For example, in the natural world, we often perceived
the scenes where many small objects clutter up a large area and
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the luminance contrast between them is low. Fig. 8 shows three
images of such kind. Tiny objects, such as grains of rice, gran-
ules of bacteria and pieces of coins, spread over the large back-
ground in a random order. In [29], Braga-Neto et al. developed
an object-based image analysis technology based on the notion
of multiscale connectivity, which can be specially exploited for
extracting these tiny objects hierarchically from the complicated
background. Although the method has produced impressive re-
sults for these complicated images, the inherent systematical
theory is too complicated to understand for nonexperts. It would
hamper its wide application to other kinds of images. Our al-
gorithm, however, possesses an -neighbor coherence criterion
which is easy to interpret and comprehend, and, thus, our algo-
rithm could flexibly deal with this type of images.

From the top to the bottom, we name the three images in
Fig. 8 “Rice,” “Bacteria,” and “Coins,” respectively. Their seg-
mentation results by CCTA, Ncut and KMST are arranged in
the corresponding rows. We formulate the problem in an object
segmentation paradigm where the task is to distinguish each vi-
sual object from the background in a hierarchical order. Hence,
beyond a background region, we wish to partition the three im-
ages into 81, 21, and 10 regions corresponding to 81 grains of
rice, 21 granules of bacteria, and ten pieces of coins, respec-
tively. As shown in Fig. 8(b), CCTA successfully discovers the
twenty-one granules of bacteria and the ten pieces of coins. For
“Rice,” our method does not find the total eighty-one grains of
rice. For and , CCTA has found 77 salient
grains of rice. Four smallest grains of rice located at the image
boundary vanish in the visual perspective. Note that each small
piece of coin, granule of bacteria or grain of rice is detected in
a single region which is represented by one CCT and presented
in Fig. 8(b) one by one.

Without stating the desired granularity of control over the
number of regions, image segmentation is an ill-posed problem.
Since the segmentation of the three images produced by CCTA
contains 78, 22, and 11 regions (including one background re-
gion) respectively, it is reasonable to enforce Ncut and KMST
to also produce results with 78, 22, and 11 regions. Then we
compare their segmentation results in a fair manner. Percep-
tibly, CCTA performs consistently the best. From Fig. 8(b), we
can see that each visually desired and small objects are effec-
tively distinguished from the background by CCTA. In addi-
tion, Fig. 8(c) has shown that CCTA represents the complex
background as a whole by one CCT. That meets our goal of
the semantic segmentation, namely, all the objects including the
background should be of “approximately equal importance.”
KMST also attends to the segmentation of the background areas
as seen in Fig. 8(e). However, KMST falsely merges many vi-
sually salient small objects into the background regions. Those
unfavorable issues also arise in the results segmented by Ncut in
Fig. 8(d). Moreover, Ncut often fragments the backgrounds into
many meaningless pieces, especially for “Bacteria” which has
the white background areas around each granule of bacteria.

2) Results on Berkeley Segmentation Dataset: Distin-
guishing rice, bacteria and coins from the background is a form
of the figure-ground discrimination problem. In this subsection,
we apply our algorithm to this problem more directly on seven
representative natural images which come from the Berkeley
Segmentation Dataset. The most of Berkeley Benchmark im-
ages are of animals in natural scenes, but there are also many
images of people, man-made structures, and urban scenes. It is

Fig. 9. Results for seven natural images coming from Berkeley database.
From left to right, they respectively are (a) input images, (b) segmented images
by CCTA, (c) Ncut, and (d) KMST. The corresponding parameter settings
are “Crow”: k = 5, " = 20, Ave(5) = 16, c = 2, r = 13 and t = 500,
s = 600; “Tiny animal”: k = 4, " = Ave(4), c = 3, r = 13 and t = 100,
s = 150; “Pie”: k = 7, " = Ave(7), c = 3, r = 20 and t = 800, s = 900;
“Boat”: k = 5, " = Ave(5), c = 2, r = 11 and t = 300, s = 500; “Bear”:
k = 7, " = 29, Ave(7) = 35, c = 3, r = 10 and t = 300, s = 300;
“Glede”: k = 10, " = Ave(10), c = 3, r = 12 and t = 300, s = 200;
“Plane”: k = 8, " = Ave(8), c = 2, r = 10 and t = 500, s = 500.

known to us that the figure-ground separation problem is hard
to solve. The objective is to isolate objects of interest from the
background in arbitrary scenes.

On one hand, CCTA intends to partition an image into a set of
disjointed regions such that each object is projected into
a subset of these regions. According to the previous
descriptive concepts for CCTA, the set of disjointed regions
is certainly composed of several coherence classes (CCs) and a
residual group (it is possible that ). The mathematic
depiction is that . The notions of EC and CC
in the above sections imply that CCTA could be powerful to
find each exactly, which is just coincident with the goal of
figure-ground separation. On the other hand, CCTA utilizes a
bounded breadth-first search for a set of connected pixels that
maximize the probability of being an object. This local search
is efficient because of its linear computational complexity, in
contrast to Ncut and other graph-based top-down methods [14],
[15], [17]–[23].

For convenience, we consider a restricted form of the figure-
ground problem, i.e., only one or two classes of objects appears
in the scene, like the seven chosen Berkeley Benchmark im-
ages: “Crow,” “Tiny Animal,” “Pie,” “Boat,” “Bear,” “Glede,”
and “Plane.” The background consisting of an arbitrarily large
number of real objects from the world is out of our focus. How-
ever, the backgrounds of clouded sky, rippled water, poor illumi-
nation, and shadow in the natural world still present many chal-
lenges and difficulties. Comparison results for the seven tested
images are shown in Fig. 9. From left to right, these columns
are the input images, segmentation of CCTA, Ncut (the second
column counted from right) and KMST (the rightmost column),
respectively.

The results are qualitatively different, although the number of
regions is identical or similar. While CCTA does not guarantee
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to find the best solution, it practically performs quite well. It ap-
pears that CCTA outperforms Ncut and KMST consistently. For
example, “Tiny Animal” is an image of a tiny animal walking in
the snowbank at night. Some disturbing sensor and reflex noise
exist in this image. Ncut separates the black noisy sky into two
regions and misses the tiny animal. KMST discovers the strip
of noise pixels and merges the tiny animal into the sky region
and snowbank region in a wrong way. CCTA correctly finds the
tiny animal and achieves two apart sky and snowband regions
exempted from the annoying disturbance. This example illus-
trates one of the advantages of CCTA, which is also distinctly
exemplified in “Plane.” The complicated clouded sky with sharp
intensity variance disables Ncut from finding the flying plane ac-
curately. In contrast, KMST seems to extract a roughened plane
which is a distortion of the desired flying plane. Note that large
regions with coherent intensity generally do not correspond to
the projected surfaces of an object in our experiments. “Crow”
is such an image. A crow rests on the long and thin branches
and the intensity contrast between them is very low. Simulta-
neously, the branches divide the background with shadow into
several occlusions. For this image, CCTA excellently discrimi-
nates the three objects, branches, a crow and the complex back-
ground as a whole. While Ncut fails to isolate the crow from
the branches and manifests the complex background with two
or three different intensity regions. The same issue happens to
KMST. The results for other images segmented by Ncut and
KMST are much coarser than those by CCTA, especially for
“Bear,” an image of a black bear playing in a pond overgrown
with float grass. Ncut cannot separate the black bear from the
pond, while KMST has the bear and its inverted reflection in
water merged together.

C. Interpretation of the Residual Group in CCTA

In our experiments, CCTA achieves one residual group
for each image. Fig. 10 depicts the segmented residual groups
of all images. Apparently, they represent the rejected noise,
contours or boundaries and the undersized objects. As stated in
the previous sections, CCTA is to seek for a semantic segmen-
tation based on the proposed -neighbor coherence criterion.
The coherent neighboring pixels would belong to the same
object region with a high probability. The intensity differences
between them are below the threshold which are thereby
connected by branches of one CCT. Meanwhile, the pixels with
the highly discontinuous intensity are excluded from being the
nodes of any CCTs which are pooled into a residual group.
Notably, it often holds true that intensity discontinuities are
generally caused by noise, occlusions, object contours, region
boundaries and shadow. Hence, we can see that s in Fig. 10
delineate noise, object contours or some combination of types
of intensity discontinuity. In practice, the tested images in
our experiments have the complex backgrounds, such as the
clouded sky, scenes fragmented by long and thin branches,
or degraded by shadow, uneven lighting, sensor and reflex
disturbance, and that the sizes of objects of the interest and the
complex backgrounds are in discrepancy. Those factors lead
an impossibility for CCTA to find a suitable spatial neighbor-
hood scale which would make a tradeoff between the large
backgrounds and the small target objects. Rather than to extract
objects from backgrounds, CCTA indeed prefers to isolate the
perplexing backgrounds from objects of the interest. As we can
see, is often larger relative to the size of objects. Accordingly,

Fig. 10. Residual groups of all images. Top row: G represents noise (first
column) the semantic object; Lower row: G represents the contour or bound-
aries of object.

the small or tiny animal, long and thin contour map, document
words, branches are excluded from the background regions,
which are kept in the residual groups.

VI. EVALUATION OF EXPERIMENTAL COMPARISONS

Up until now, the effectiveness of CCTA is evaluated visually.
In other words, the results of the three methods are only mea-
sured qualitatively and indirectly on the extensive difficult im-
ages. That is a rather subjective comparison. It is so necessary to
provide a reliable objective judgement with a quantitative eval-
uation method. In [30], Zhang divided a variety of segmenta-
tion evaluation methods into two categories: analytical methods
and empirical methods. “The analytical methods directly ex-
amine and assess the segmentation algorithms themselves by an-
alyzing their principles and properties. The empirical methods
indirectly judge the segmentation algorithm by applying them to
test images and measuring the quality of segmentation results.”
Recently, Cardoso et al. in [31] further classified the empirical
methods into empirical with implicit reference (so-called empir-
ical goodness) and empirical with explicit reference (so-called
empirical discrepancy). The entropy-based quantitative evalua-
tion function proposed by Zhang in [32] falls into the class of
empirical with implicit reference. The global consistency mea-
sure (GCE) and local consistency measure (LCE) are introduced
by Martin in [9], more thoroughly in [33]. They belong to the
class of empirical with explicit reference. In this section, we
make use of the two evaluation methods, i.e., entropy-based
evaluation function and GCE, LCE to present an objective and
quantitative comparison with Ncut [21], [22] and KMST [10],
[11]. KMST runs with the smoothed images, whereas CCTA
and Ncut work with non smoothed images. The two evaluation
methods adopted here are summarized in the following.

1) Entropy-Based Evaluation Function : We first define
a segmentation as a division of an image into arbitrarily
shaped disjointed regions. Let be the size of the full image
, be the number of pixels in region (denoted as ) in

which the intensity value is in , be the set of all possible
intensity values in . Then, the entropy for , the expected
region entropy and layout entropy of image are, respectively,
denoted as , , and . Their mathematical for-
mulations are in the following:

where and

, and the entropy-based evaluation func-
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tion is that [32]. Obviously, combines
both the layout entropy and the expected region entropy

. In essence, it tries to balance the trade-off between
the uniformity of the individual regions and the number of
segmented regions of the segmentation.

2) LCE and GCE: is an unsupervised evaluation method
which requires no prior knowledge of the correct segmentation.
In contrast, GCE together with LCE [9], [33] is known as a
supervised evaluation method. Let be the set of pixels
which are in the same region as the pixel in segmentation ,
where denotes the cardinality of a set and set difference,
then the local refinement error is

(12)

Using the local refinement error , the LCE and the
GCE are defined as

Note that GCE has more stringent requirements since it requires
all local refinements to be in the same direction while LCE al-
lows refinements in different directions in different parts of the
image. Hence, for any two segmentations of the same image,

.
3) Evaluation Based on , GCE, and LCE: It is often the case

that CCTA partitions an image into a set of disjointed regions ,
. Each CC is represented by one CCT which se-

mantically describes a physical image content including kinds
of complex backgrounds. The pixels in could be connected
by branches of a single CCT. As shown in Fig. 10, they visu-
ally represent the noise, object contours, region boundaries and
small or tiny objects. To make a fair evaluation, we should take
some reasonably feasible postprocessing for the formed so
that every pixel is on an object surface. The simplest means is
to merge every pixel in into one of the generated CCTs with
respect to a certain instructive rule. For example

where denotes the number of CCTs. Such an intuitive way
distinctly suits to merge the noise, contour and boundary pixels
in the into one of object regions. However, it is an unaccept-
able suggestion for the residual group which itself delineates
a single physical object. Therefore, we treat the residual groups
in two different manners:

1) keeping pixels in which depict a single physical ob-
ject intact, then ;

2) merging pixels in which depict noise, contour or
boundary into one segmented region according to the
rule discussed above, then .

After such a postprocessing, CCTA creates the final segmen-
tation for each image, which in turn are used to evaluation of its
effectiveness. In addition, if we also focus on the accurate dis-
crimination between noise and object contours or boundaries,
an alternative way for treating can be done via the following

Fig. 11. (a) Input images; (b)G ; (c) CCT1 (background); (d) CCT2 (crow or
black bear); (e) mergence results; (f) discriminative results.

means. If ,

then is the outlier of . Otherwise, is the boundary be-
tween and other CCTs. Several results are presented in
Fig. 11. From the subfigure, i.e., Fig. 11(e), each animal has an
integrated body where the small holes have disappeared.

We perform evaluation experiments on a subset of 21 gray im-
ages from the Berkeley segmentation datasets. For each image,
the expected number of regions segmented by CCTA, Ncut and
KMST are enforced to be the same. Table III demonstrates the
comparison results of them respectively based on , ,
and , where “No.” denotes the ID number of the image, the
number of segmented regions. The values of , , and

of them are respectively illustrated in three columns (from left
to right). Obviously, CCTA gains the most compact segmenta-
tion since it shows the smallest values of in boldface for all
tested images. KMST performs better than Ncut on the majority
of the tested images.

We also compare the segmentation results of Ncut, KMST
and CCTA with each human segmentation result for each image.
Each image has at least five human segmentation results avail-
able in the database. Fig. 12 depicts the comparisons based on
GCE and LCE, where the distributions of them are shown as
histograms. The horizontal axis of each histogram shows the
range of GCE or LCE values, while the vertical axis indicates
the percentage of comparisons. From the subfigures, we can see
that CCTA gives significantly fewer errors, while Ncut makes
the most errors. The average LCE and GCE values of Ncut
are 0.1110 and 0.1641, which are larger than those of KMST,
0.0927 and 0.1384. As expected, CCTA has the fewest average
errors of 0.0867 and 0.1327.

VII. CONCLUSION

Our contribution lies in proposing a scale-based CCTA for
image segmentation, which satisfies a so-called 3-E property:
easy to implement, effective for semantic segmentation and ef-
ficient in computational cost. Specifically, CCTA relies on an
introduced -neighbor coherence segmentation criterion which
is easy to interpret and implement. The objective is to find a
set of coherent neighboring pixels that would be the members
of a single physical object (including kinds of backgrounds)
with a great probability. CCTA builds those found pixels into a
tree-based data structure, named CCT. Meanwhile, the notions
of equivalence class and coherence class guarantee the separa-
bility of an arbitrary image. Extensive experiments on both syn-
thetic and natural images indicate that CCTA is qualitatively
effective to fulfil the task of semantic segmentation with an
adaptively selected spatial scale and an appropriately deter-
mined intensity-difference scale . The two empirical evalua-
tions, i.e., goodness and discrepancy GCE, LCE further illus-



DING et al.: A SCALE-BASED CONNECTED COHERENCE TREE ALGORITHM FOR IMAGE SEGMENTATION 215

TABLE III
EMPIRICAL GOODNESS EVALUATION BASED ON ENTROPY

Fig. 12. Empirical discrepancy evaluation based on LCE and GCE. Histograms
of the distribution of errors (LCE and GCE) for different segmentation methods.
Human segmentation results compared to results based on: (a) Ncut; (b) KMST;
(c) CCTA.

trate the effectiveness of CCTA quantitatively for these difficult
and complex images. In addition, CCTA is efficient because it
has a computational complexity nearly linear in the number of
image pixels. Our future work will consider other types of im-
ages whose pixel values may be color, texture and their combi-
nation, and so on.
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